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Molecular Evolution
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| o) Polymorphisms in Population

> Why do we care
about variations!

- Underlie Pl’TE hotypic
differences

——1 — Cause inherited
’ ! diseases

- Allow tracking
ancestral human

l ’ ! ' history

|" ﬂI‘FFn':' 'nClFlH.. .‘ﬁ‘:? AE] ".-'ﬁ'JI.ﬂl

J_a—-‘“#—-
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"o How do we find sequence variations/

o Look at mu|1':ip|e
sequences from the

§ HWElim N i same genome region
T values o decide if
TCTCACCAATCT AR AATACCTETCAT TR mismatches are frue

TCTEROCAARTUTRARRAATACCTETHAT TAA

TTGATECCTGT — Polymorphisms o

TTGAT ICCTGT seqtallenci‘ng err:."::rrs_
¢ Distinquish variation

TBQQQ@ AaTT derived from Father VS,

TGARATGART T that from mother:
Hap/mj/pes

Made by A-PDF PPT2PDF



Allelic association

$ddd0d

L R & RoRog Lo

matket site

functio hal site

o |tis the non-random assortment
between alleles
— It measures how well knowledge of
the allele state at one site permits
prediction at ancther

- Significant allelic association between

3 marker and a functional site permits
ocalization (mapping) even without
having the functional site in our
collection

= S’creng’ch of allelic association

— Pair-wise and multi-locus measures
~f 3ssociation.
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o Motivation

> Disease association studies
— identify genetic variation that contributes to
a particular disease
> Drug Design
- design drugs tailored to spec ific popu lations
¢ Population Genetics Inference

— the extent DHinkage disequilibrium can tell
you about the patterns D?I‘ECDH‘J bination, or
about demographic events (like recent
bottlenecks).
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"o Ir}Ferring Popu|a’cion Genetics

o The limited diversity in the Eu ropean
population as compared to the African
Pr::rpuh’cic:m
— It may be indicative of the founder effect.
~ It supports the out-of-Africa theory.

* |BM-National Geographic project:

> GENOGRAPHIC

~ https://www9.nationalgeographic.com/genographic/
index_html
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<~ | Genographic Project

o Whatis expected:

o

inFolfmation

s

- Online at natior

GENOGRAPHIC

Public database of a n’chropobg ical genetic

Virtual museum a::n(human his’cory

Matiansl l!ll:nrlpl:\l: !I.J.rl.'ll
woih TBF i rrajbr ptudy of
Fajmnimn Deigesr;

algeographic.com/genographic,

= |I'1{T"'|["|"’1+I"‘-[‘* about Jﬂrwh s, migration, ||rﬁq listics,

indigenous popt
anthropology, ’q|c|

— Public participation

o

i
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— Mitochondria and Phylogeny

o Mitochondrial DNA (mtDNA): Extra-nuclear
DNA, transmitted ’chr-::rugh maternal |ineage-
Mitochondria are inherited in a growing
mammalian zygote only from the edq.

> 16.5 Kb, contains genes: coding for 13 proteins,
22 tRNA genes, 2 rfRNA genes.

o mtDNA has 3 pointwise mutation substitution
rate 10 times faster than nuclear DNA.

> P|1y|c::rgeny based on human mtDNA can dive us
molecular (hence accurate!) inﬂ:-rmafion about
human evolution.
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R

B Rate of Evolu’cional'y Cha nges

> Taxa of nucleotide or amino acid sequences.

> Given two taxa s;and 5, measure their distance
- Distance(s, s)), ¢, = Edit distance based on pairwise
sequence alignment.
> Assumptions about the Molecular Clock
(governing rate of evolutio nary change):
— Only independent substitutions
— No back or parallel mutations

- I'-Iﬁghif:‘c selection pressure.
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5

Distance Based Approaches

1_
A

> Given:

An nX n non negative valued distance
matrix M € R," %" where M is the
distance between c::b|ec’c5 fancl /

o Construct:

An edge-weighted tree such that the
distances between leaves /and jare “close”
to M;
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o Average Linkage Clustering

> UPGMA

- (Unweighted Pair-Group Method using an
Arithmetic Average).
o Distance between clusters (d Isjoint sets of
taxa) C,and C, is

¢ Distance(C, C) =4,
= (1/IC] - C{J) L

—_
-,

o This is the averade distance be{weénl ﬁairs
DF’caxa from each cluster.
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T UPGCMA

¢ Assign each taxon to is own cluster.
o Define one leaf for each taxon—
— Place it at heig htO.
o While more than two clusters exist
— Determine two clusters 7and le‘Eh sma”es’cd
— Define a new cluster C, = C, U G
— Define 3 node 4 with c:|]||c||en fand —
> Place it at height d;/2
- Replace clusters C; and G with C,

o Join the |a5’c ‘cwo c:|u5h=-_|5 (Ia nd /) hy root at
|1E|g|]tc|
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— Nucleotide Sequences

> Synonymous or Neutral Substitutions:

= Nucleotide substitutions with no effect

on expressed 3mino acid sequences

> RECALL: Genetic code is redundant—Maost
substitutions to 3 positions are synonymous.

> Often a single hon-synonymous nucleotide
substitution is likely to change one amino acid
into a related amino acid (e.q., both
hydrophobic).
o Molecular clock is modeled based on
non-synonymous substitution rate.
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o Variability of Nucleotide Mutation Rate

> Transitional Mutations:

- purine-putrine, i.e. A+ G

- pyrimidine-pyrimidine, i.e. C< T
> Transversal Mutations:

- purine-pyrimidine A T A C G C G
T

= Usua”y transitional mutations are more |i|<e|y.
Mutation into A is more |i|<e|y.
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S0 DNA repair

=

o Effect of DNA repalir mechanism

A for ... #per site per year

|1ighe|* primate =2 1.5 x 10-7 /site/yr
sej urchins & rodents 2 6.6 x 10-7/s ite/yr
mammalian mtDNA =2 10-5/site/yr

plant cpDNA =2 1.1 x 10-%/site/yt
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"o Markov Process Model of Mutation

S Ex-m|utic~h is modeled by a stochastic process, X() with
alued time parameter £ 2 O

o Atime-homogeneous Markov process

¢ (Q, =, P(Y))

¢ Q=1{A C G, T} = States

o 1 ={mu, n, ng, nr} = Initial Distribution

e Paal +:" Pactt! Pa, Gt (t) parl t
Pealt Fn:n:'xt' Pcgt t' F'n:.ffJ_f-"_
Pl () pe s Pec(t)  pert)
pralt! prcCt F'T,G':t*:I proit)
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=

=, Markov Process (Contd.)

P AT
=Prlclt, 4 = PriX(® =c | X(O) =11

= Probability that a nucleotide with 3
value T at time O mutates to 3 5 by time ¢

o P(#s) = P(OP(s)
o p.(8 = PrIX(H = 1]
= Yk iacaT T Pri(P

o m ={n., n-, -,y } is astationary
distribution for P(®

YVt T PH=n
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= Markov Process (Contd.)

o P(H
= P(8) lim, ; ,o [P(A 6 - P(O)1/IA 4
= P(H A
s Solution to the differential equation:
P(H =exp(A O =3 _ A" &/n
o Row-sum for A is O:
S, =limy 0[S p,~11/[A48=0.
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S Juke-Cantor Model

ol |
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S Juke-Cantor Model (Contd.)

> A=-4a(l-m)

o> p({) = g—+all-m ¢
= | [2Z0%° (=40 O/ nl] {2, -0 7" (40, O/ n!}
= le#tet{|+m (et - 1)}
=etaf| +q (-e4*Y)

S p (B =il 45 e )

O P(‘f) = 'L,-'f_;_ (1 — —i— E__L U”{:), == /
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B Ex3 mp|e

* (Based on mtDNA Sequences)
o Let q = the proportions of nucleotides that
s same in two mtDNA sequences.
o |{ =6 ot expected number of substitutions
g = 1/i(1+ 3 e3/2K),
K =(2/3) In (3/(4q-1))
¢ Juke-Cantor distance between 3 pair of
mtDNA sequences is given by
K’ = (2/3) In (3/C4q-1)
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Example (Contd.)

o Differences in mtDNA sequences

12
11
11
11

Human Chimpanzee Georilla Orangutan Gibbon
Human = 1 5 g
Chimpanzee - 2 8
Gorilla 5 6
Oranguian -
Gibbon
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s Example (Contd.)
o Jule-Cantor distances between primates
Human Chimpanzee Georilla Orangutan Gibbon

Human = 0.015 0.045 0143 0198
Chimpanzee - 0.030 0.126 0179
Gorilla - 0.092 0.179
Orangutan = 0179
Gibbon -
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UPGMA Phylogeny

Hurman

Chimpanzee

Gorilla

Crangutan

Gibbon
SN2 O.060 O.019 VO F
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N Kimura's Model

o More realistic than Juke-Cantor
o Kimura (1980) proposed a two parameter

model

LAAE A G C T
A a2 o BB
o o« <o28p B
C B B -a-2B o
N B B a-a2p

o Thus, P’i_i(‘U = 2 Pik(t) ?"hi
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"o J<o|mogorov’s bw. & fw. eqns.

> The transition probability of Kimura's two
parameter model is
paa(t) = (1/4) +(1/4) e BE +(1/2) -2+t

pac(t) = (1/4) +(1/4) e % PE_(1/2)e2(xP)t
pac(t) = (1/4) -(1/4) e4Bt
pa(t) = (1/4) -(1/4) 4Bt

* Allp, () 5 Viast 300 &
o P (Y>> iv>n. (4), pAT('E)
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e Measuring Distance with Kimura’s model

L

Frequencies cnctra nsitional and transversal
cha nges between two sequences=q, & r,
respective |y_ — Q & R are their expec’ced values:

Q=pac(28) = Va+ VieBBt _ 1/s edlarpt
o R = PFRC(:‘U.I. P;’—"‘T(:'E} =l/>-1/ E_BBJE

o 1-20=PR = e-4(u+pit

1-2R= e8pt

L

o

T

Expected number of substitutions:
(0+2pB)t. . .estimated as

Ko =12 In(1-2g-r)- Va In(1-2r)

o
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S IKimura's 6 parameter model

> Kimura's 2 parameter model differentiates
between transitions and transversions. ..
but in equilibrium all four bases have
equal Fl*equencies.

o However in the |’:reavy5’cra nd of human
mtDNA, the ﬁ#eque ncies are unequal!

A T C G
0247 0.515 0.502 0.139

P Viemoonts Lo - ster model addresses it!
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s Kimura's 6-par model
A=
A G C T
A 207 Yy oL o
g 0, -Zo-9; a
' 28—y, v
- P P 12

P B 5 2P
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5 UPGMA & The Molecular Clock

o Assumes 3 constant molecular clock:

- Divergence oFsequ ences is assumed to occur
at the same rate at all points in the tree.

o This assumption is in general false

— Selection pressures vary across time per iods,
organisms, genes within an organism, regions
within 2 dene.
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T Ultrametric Trees

> Distance function P satisfies the axioms:
p(i ) = O with equality iff £/
pCip) = p(fin (symmetry);
p( k) < p(ip + p(} k) (triangle inequality).
o Path |engf|1 between / / of T = Sum D‘FECIQE
weig hts a|on<_:] the path connecting jand /.
o IfY jand / Py = path eng’ch between / / D‘FT,
then p is called an add itive tree metric.

o |fthe pa’ch le ng’ch from the root to every |EE|‘FiS
identical then P is called an ulrametiic.
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o UPGMA & Ultrametric Data

o |fthe rates of evolution among digeren{:
|ineages are e:.uzac:’dy the same, then the data is
ultrametric.

> Definition (3-Point Condition): For any tr ip|ef
:::Fsequences [# [# K, of the three dista ncesd
d . clﬂ;(l two are Equa| and not less than the

ﬁ!lld

dig= dlrk = dff
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-ld"""

Additive Metric

o Every add itive metric satisfies the 4-point
condition:
o ¥ i j k | ofthe three sums S,=d, RETTE N

d;;ﬁd qand S;=d,+d.; two are equaland not
|esst|1an thethird. Eq. 5, =5, =5
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— Neighbor Joining

e

o Like UPGMA constructs a tree by
SEC[LIEITUa”y |oining subtrees

> Unlike UPGMA

- Does not male:.e mo|ecular CIDCk assump’cic—n

— Produces unrooted tree

> Does assume additivity: Distance between
3 pair of taxa is the path length in the tree.
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T

Distances in Neighbor Joining

o Given 3 new internal node « the distance
to another node kis given by

Sy k= (d e d ey d ) /2

- &
e
\_\_\

U
_—'—'_'_'_-
@ -F_'_'_'_'_._:—'_'_
‘ !
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Distances in Neighbor Joining

o Calculate the distance from a leaf to its parent
node sim i|ar|y:
Sfir:.f = (d:ﬂj." dﬂk'dﬁk}/:: d;/: + (dﬂk‘dﬁk)/j

e~ dfif'- 3

e

—f-
@ -'_'_'_'___,_o—'—
‘ !
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S Generalizing the Scheme

o (To more than Three Leaves)
o> Definer, ==, Nd,,
¢ Rate corrected distance between taxa /and /
m; = dy— (it 1)/ (N=2)
is used to choose the “negrest neighbors” to be joined.

e

-

1 -F_'_'_'_'_,_,—'—'_
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Generalizing Distances in NJ

o Calculate the distance from a leaf to its parent
node sim i|ar|y:
Sy = cIJ,;/Z + fl*f--lff)/flfﬂ!—ﬂ))

Sia T d;;,r" S

.'I -]
EH\"'-\-\.
E 2
@ _'_'_'_'_._:—'_'_
!
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R

"o Picking a Pair of Nodes to Join

> Ateach step, pick a pair of “nearest neighbor”
nodes to join-Nearest neigh bor is hot
determined by m inimal d”- but m
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o Neigh bor Joining A|§]GI*I‘E|’?TT?

o T= Set of leaf nodes

o While more than two subtrees in T
- Pick a pair //in T with minimalm

- Define 3 new node « joining /and /

- Remove 7and /'ﬁ*-::rm T and insert «

o Join the last two remaining su btrees
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2 Example
Gorillz
Haman Crangutan
0005 i
ofs 057
0.025 0 Q4D
0001 e
chimsnzse Gibbon
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S Rooti nC

e

Trees

& Neighbmr loining met

hod creates an

unrooted phylogenetic tree.

> A root is assigned to 3
ﬁncling an c:wf_gf'{:mp.

n unrooted tree by

- An outgroup is 3 species known to be more
dista n‘c|y related to remaining species than

H*fey are to each other.

— Point where the outgroup |oins the rest of
the tree is best candidate for root position.
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| e Rooting Trees

1 Outgroup

Candidate Root

5
ol =
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s Other Distance Matrix Methods

> Phylogenetic Trees are constructed using:

- Cluﬁ’termg Method: Ide ntifies groups of close
taxa. E.g. UPGMA or Average Linkage
C|us‘cering Methods.

> Sequential

> Agqglomerative
> Hierarchical

> Nonoverlapping

— Pairwise Method: Pairs 3 taxon (or 3 dgroup of
taxa) with its nearest neighl'*or_ E.g. Additive
trees constructed with Fi’cch-Margohsh
Algorithm.
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Matching and Alignment
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5 Inexact Matching

> Example: Eit Distance Problem:
- Edit distance between two hioh::g ical
sequences
- May correspond to:
> Evolutionary Distance
¢ Functional Distance
> Structural Distance
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B Edit Distance

o Simp|es’c distance function corresponds to:
EDIT DISTANCE
> Atomic Edit Functions:
— Insertion AATCGG +— AATACGG
~ Deletion AATACGG > AATCGG
- Substitution AATCGG +— AATAGG

* A composite ed it function

~ Function Composition of Atomic
Edit Functions
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o Cost of 3 Composite Edit Function

o> (Based on the cost or distance for Atomic
Edit Functions)

> Given: Two strings S;and S,

Distance(S,, 5-) = min { cost(E) | E(S)) = S-}
Where

E = composite ed it function mapping 5; to 5,.
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B Some Properties of Distance Function

* Assume:
(V e= Atomic Edit Function) cost(e) = cost(e™)

= DiStanCECS-[; 52) = DiStanCE(SE, 51) 5}’mmfff.~*f
- Distance(S4, S = O
- Distance(5,, 5,) + Distance(S,, S3) > Distance(S;, S3)

Triangle Inequality
> Simplest Cost Function:

— Each atomic edit tinction is of unit cost
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Edit Operations

< |: Insertion -:::'1(3 character into the first
S‘EI’ir}g 51

o D: Deletion -::n(a character from the first
S‘EI’ing 51

o R: Replacement (or Substitution) of a
character in the first string S, with a
character in the second string S.

o M. f‘v’laf{fl"ll"}g (|C|EI’TE|‘E‘;I)
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o Edit Transcript

> The complete ed it
function is described by
Example: an "edittranscript’

o EDIT TRANSCRIPT

=ce{D M R I}
GATT A CA
4 4 1] > Example (in left).
TTCGGCATT - Edit tra nscript =
DD apal 0 [ R]T | papa [ 1] DD MIRIMMII

i 2 345 § (7 - Edit Distance =
+1+0+1+1+1+0+0+1+1=7
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5 Levenshtein (or Edit) Distance

T

o Edit Distagnce between two strings S, and S, is defined as
the minimum number of atomic edit operations -
inseltions, deletions (indels), and substitutions — needed
to transform the first string into the second

o Optimal Transcript = An edit transcript corresponding to
the minimum numbel of atomic edit operations of unit

cost.

EDP

The Edit Distance Problem

s to compute

— the edit distance between two qiven strings, 3
with

ong

— an optimal edit transcript that describes the

ment)
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— Dynamic Programming Calculation of Edit Distance
S

o Define:

DC1L1) = Min nhum ber oFa’cDm ic edit operations
heeded to transform the first i characters ::HCS1
into the first | characters of s,

= EditDistance(5[1..1], S;[1.41)
Sl=n 1Sl=m
Distance(S;, S;) = D(n,m)
< Dynamic Programming: 5 components:

.

— Recurrence Relation
~ Tabular Computation
_ -l_l -‘ll-._-'l-'-‘ll-l
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| o Recurrence

¢ Base Relation:
T [-‘||':|:"I|':'IMI = |:_"'|
- EditDistance(h k) =0

o Fecurrence [Fe

ations:
- In1 coordinate:

DCLO) = DOI=1,0)+ (5[] deleted)
- DCO,i) = D(O,j-1)+ (S, 1] inserted)
DCi-1,[-1) | DCi-1,]) AT S L IcEiR
- EditDistanceCS (1,01, X =i (i deletions)
Tl - EditDistance(h, S,[1.[1) =] (] insertions)
[_‘“fl,|—1ﬁ' _'['jlfll‘\ - 1n I"Dth CDDI'dthCS:
% DCH) = min {DC-1]) +1, (5111 deleted)
o | —1
{DCI]-10+1, (51j] inserted)

{D{'l-—#].[—’] )+ ﬂfl,[” (substn or |T_13’(C|1}
AG D =1 if S,[i]# S, [j]; O otherwise.
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B Efficient Tabular Computation of Edit Distance
| =

¢ Recursive Implementation k- 290rm) _time computation

¢ Bottom-up computation

(n+1)x (m+1) distinct values for DGi,j) to be computed
> Dynamic Programming Table of size (n+1)x (m+1)
- String 51 corresponds to the rows (Verticgl Axis)
- String 5_2 L:c:nl'l'espc:.whds to the columns (Horizontzl Axis)
¢ Fill gt DO & First Colump
o Fill out DO, j) + First Row

> Fill out rows DG,j) + Lett—to-Right (incregsing i)
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The Algorithm

o fori=0tondo
DG,0O) «i;
for =Ctom do
D(O,|) « ji
fori=1ton do
for =1to m do
DG, i) < min[ DG-1,i)+1,
DG, -1)+1,
DG-1,j-1) + AG)) ]
O
¢ Time complexity = O(nm)
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1:

—Ig

- A A T C G G

0 T 2 3 4 5 &
NS T
Y N L
G sfw\z‘wz\sw‘w
G 4 #N_RSN \3w
T[Ty N
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edit distance =4
(5ol 1) T A-GGC

AATCOG

1 23 4
(Edit Script=

EAMIEMED
(sol2) - ~TAGGC

AATCGG -

125 =%
(Edit Script =

| MEMMD)



!l'_

e Trace Back

T

> Extracting Optimal Ed it Transcript:
> Seta pointer from:
- Cell(i,j) = CellGi,i-1), if DG,j) = DG, j-1)+1
Horizontal Edge = |, Insertion
- CellGi,j) — CellG-1,i), if DG,j) = DG-1,()+1
Vertical Edge = D, Deletion
— Cell(i,j) = CellGi-1,j=1), if DCi,j) = DCGi-1,=1)+AG,|)
Diagonal Edge = R, Substitution, if AG,j)=1
M. Match, if AG,j) = O.
o Optimal Edit Transcript can be computed in
O(n+m) additional time
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s GAPS: The Scoring Model

> Basic operations:

— Sequencing Errors or Ew::r|u1':|'::vnary processes
DFMH'EHHDHS and Selections

- Substitution: Cha nges one base to another.
- Gaps: Insertions or Deletions:

Adds or removes 3 base.

> Total Score Assigned to an Alignment=

- Sum DF’cerms Fa:::r each a||'<_:] ned pair ::n( bases
p|us terms for each Jap.
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Total Score of an Alignment with Gaps

o Total Score Assighed to an A|ignment
- Corresponds to |r::~:_:] of the
- Relative likelihood that the two sequences are
related compared to being unrelated.
¢ Assumptions:
— Mutations or Sequencing Errors at di#&l*enf

sites in a sequence occur independently.

Made by A-PDF PPT2PDF



T Substitution Matrices

o Notation: x and y = Pairs mFseque nces,
xI=nand lyl = m.
X,y € (A+G+C+T)
- x; = it symbol in x
-y = it symbol in y
¢ Random Model, R:
P(xyIR) =TIq, I1q,,

- q, = probability that the letter “a” occurs
independently at 3 given site.
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o Random Model vs. Alkternative Model

e

o Alternative Model, M.

¥ P(Ky I M) = H P}»i. Y|
- pyp = Pra:::l'val'vﬂi’cy that the letters “3” and “b”
have each been derived independently from
some common letter.

¢ Log-Odds Ratio (LOD):

s(a,b) = In (p.,./q, q.)
* P(xyIM)/P(xyIR) =TT (p,; i/ 4. q.,)
= [Texpls(x,y;)] = explX s(x, y,)]
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= Score

¢ Score = In [ P(xyIM)/P(x,yIR) ]
=Y s(x, y;) =s(xy)
o Score Matrix or Substitution Matrix:

A ) i =1 i > B | 5

T | -T2 |-T]- P A M

! | st & A *(Point Accepted Mutation)
o
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o T-PAM Matrix

e

o Let M be 3 probability transition matrix.
M..=Pr(a & b),
-3 b =chracters

o p.=Pr("3" occurs in a string)

N 1(# = The number of times the mutation a
& b was observed to occur.

‘( —fazk‘(w&’( TF
o K =1-PAM Evc:-|u‘c|mnaly distance

— "The amount of evolution that will cha nge
in { ~hararters An EIVEI*age.""“
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g5 T-PAM Matrix

o m, = ﬂ /(KE p.),

M.o=T-m, M =f /(Kfp)=C( /f)m.
o o-PAM Matrix = M«
o M =lim, _ M

* Score,(a,b) =10 log,, M*. /p,

> Sequence comparison with 40 PAM, 120
PAM & 250 PAM score functions. ..
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5_".:, Ga PS:

¢ g = length of 3 qap,
exponentially distributed ~ Exp(i)
f(g) = h e
> P(g) =f(g) T1q,
Ih P(g) =-Lg+Ink+sumlnqg,
=-d-(g-1)e (Affine Score Model)

- d = Gap-open Penalty
- e = Gap-Extension F’ena|’cy
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o Multiple Sequence Alignment

Detn:Given strings S;, S, ...S, a multiple
(global) alignment maps them to strings
5 S5 ..., S (by inserting chosen
spaces) such that

1.1 =150=--- =151 and
Removal c:(spaces, from S’ contracts it
to S, for1<i<I.

!\J
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o Value of 3 Multiple Global Alignment

o The sum a::ncpairs (SP) value for a multiple globa
alignment A of k strings is the sum of the values
of all Cy - pairwise a||'g nments induced by A.

o Given: Two strings S;and S,. The expanded
strings S’y and 5’5 correspond to a pairwise

alignment.
o d(x,y) = distance between two characters x and
Y

=1, ifxzyand O, ifx =y
¢ O(x,-) =o(-y) =1
¢ Distance(S,, S5) = = 8(5[il, S5[iD),
where | = |5%|=15'5.
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— Optimal Global Alighment

> An optimal SP(global) alignment of
strings S, S5, ..., S, is an alignment that has
a mMinimum PmssiHe sU m—c::r(—pairs value
for these strings among all possible
mu |'Ei|:>|e sequence a|Ignmen'E5.
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o) Generalization of DP

o Assume 5= 155 = --- =15l = n.
o The generlized k-dimensional DP table has (n+1)k

entries,

o Each entry depends on 2% — 1 adjacent entries.
_ DG, 0, ...,0) =i

= RO, 15, e D)= 15

- D00, L0 =,
- D(iq, i;w_, "'ik) = miﬂgig;ﬂ“k] [
D[ Loy Il-IJ. ' ] iE -:':

]
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B Complexity

> The time and space complexity of the
generalized DP solution of the multiple
alignment problem is = O((2n)*)

> Theorem: The optinmal SP alignment
problens is NP-complete

o |n the worst-case, one cannot expect to
do much better unless P=NP
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"o P-Time Heuristics

> A Polynomial Time Approximate
Algorithm for Multiple String Alignment:

> Assumption about the distance function:
- Triangle Inequality:
Vetars xy,2 0002) £ BCxy) +8(y,2)

alx. %} 20

Vchar, x
> DS, S5)

2 Value of the min. global alignment
of S, & S,.
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Algorithm

= |HPLI'E: J)T= ‘[51 52, e Sl,_;}
> Step 1: Find S, € T that minimizes
Xser s PGy 5)
- Time Complexity = O(k? n?)
— C,o DP each taking O(n?) time

- Call the remaining strings S5, ..., S,
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"o The ith Step

> Step i: Assume Sy, .S, have been aligned as 5';,
gl

> Add S: Run DPtoalign S, & S, = 5" and §'

- Adjust S, ..., S’ by adding spaces where spaces
were added in S,

? S’lI S;lf £y 5|’ =}3|||'grjed Sx’lr 5#2: iy S#r
— Length(S) instepi = in.
- DP(5';, S) takes OCi n?) time
> Total time Complexity
= Ol p4) +¥ 0 n?) =0OCk?*n?)
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g1 Competitiveness

M = Alignment induced by the
algmll‘chm

> d(i,|) = Distance M induces on pair §, 5

> M = Optimal alignment
o 2S5P(M) =2 1k3'—1 ;.:|k d(i, )
P |¢|'<d(|, I) +d(1,))
(Triangle Inequality)
= E| ’Tk3| 1. |:r=|kd'[I ) + Ei=1kzi=1, ]:tik d(lxp
(Symmetly}
= Tk (k) d (10 S k k) 4
=W l-NS. kAT D
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Competitiveness

kDS <)
=T, j | DG, i

G kDS, )
3 Dl\_j.,[# :li“'. +E| 1 i;éz [_'"l*--:'z.r :li"l

|"'-."- iy -'|
ey El Tk 1 [T'\'I“:'k-" ':li’:
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To be continued...
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